Pseudostarlike and pseudoconvex in a direction multiple Dirichlet series
نویسندگان
چکیده
The article introduces the concepts of pseudostarlikeness and pseudoconvexity in direction absolutely converges $\Pi_0=\{s\in\mathbb{C}^p\colon \text{Re}\,s<0\}$, $p\in\mathbb{N},$ multiple Dirichlet series form$$ F(s)=e^{(h,s)}+\sum\nolimits_{\|(n)\|=\|(n^0)\|}^{+\infty}f_{(n)}\exp\{(\lambda_{(n)},s)\}, \quad s=(s_1,...,s_p)\in {\mathbb C}^p,\quad p\geq 1,$$where $ \lambda_{(n^0)}>h$, $\text{Re}\,s<0\Longleftrightarrow (\text{Re}\,s_1<0,...,\text{Re}\,s_p<0)$,$h=(h_1,...,h_p)\in R}^p_+$, $(n)=(n_1,...,n_p)\in N}^p$, $(n^0)=(n^0_1,...,n^0_p)\in $\|(n)\|=n_1+...+n_p$ sequences$\lambda_{(n)}=(\lambda^{(1)}_{n_1},...,\lambda^{(p)}_{n_p})$ are such that $0<h_j<\lambda^{(j)}_1<\lambda^{(j)}_k<\lambda^{(j)}_{k+1}\uparrow+\infty$as $k\to+\infty$ for every $j\in\{1,...,p\}$, $(a,c)=a_1c_1+...+a_pc_p$ $a=(a_1,...,a_p)$ $c=(c_1,...,c_p)$. We say $a>c$ if $a_j\ge c_j$ all $1\le j\le p$ there exists at least one $j$ $a_j> c_j$. Let ${\bf b}=(b_1,...,b_p)$ $\partial_{{\bf b}}F( {s})=\sum\limits_{j=1}^p b_j\dfrac{\partial F( {s})}{\partial {s}_j}$ be derivative $F$ b}$. In this paper, particular, following assertions were obtained: 1) If b}>0$ and$\sum\limits_{\|(n)\|=k_0}^{+\infty}(\lambda_{(n)},{\bf b})|f_{(n)}|\le (h,{\bf b})$then {s})\not=0$ $\Pi_0:=\{s\colon i.e. is conformal $\Pi_0$ b}$ (Proposition 1).2) function pseudostarlike order $\alpha\in [0,\,(h,{\bf b}))$ type$\beta >0$ if$\Big|\frac{\partial_{{\bf {s})}{F(s)}-(h, {\bf b})\Big|<\beta\Big|\frac{\partial_{{\bf {s})}{F(s)}-(2\alpha-(h, b}))\Big|,\quad s\in \Pi_0.$Let $0\le \alpha<(h,{\bf b})$ $\beta>0$. ispseudostarlike $\alpha$ type $\beta$ b}> 0$, it sufficient case, when $f_{(n)}\le necessary that$\sum\limits_{\|(n)\|=k_0}^{+\infty}\{((1+\beta)\lambda_{(n)}-(1-\beta)h,{\bf b})-2\beta\alpha\}|f_{(n)}|\le 2\beta ((h,{\bf b})-\alpha)$ (Theorem 1).
منابع مشابه
Multiple Dirichlet Series
This introductory article aims to provide a roadmap to many of the interrelated papers in this volume and to a portion of the field of multiple Dirichlet series, particularly emerging new ideas. It is both a survey of the recent literature, and an introduction to the combinatorial aspects of Weyl group multiple Dirichlet series, a class of multiple Dirichlet series that are not Euler products, ...
متن کاملIntroduction: Multiple Dirichlet Series
This introductory article aims to provide a roadmap to many of the interrelated papers in this volume and to a portion of the field of multiple Dirichlet series, particularly emerging new ideas. It is both a survey of the recent literature, and an introduction to the combinatorial aspects of Weyl group multiple Dirichlet series, a class of multiple Dirichlet series that are not Euler products, ...
متن کاملMultiple Dirichlet Series and Automorphic Forms
This article gives an introduction to the multiple Dirichlet series arising from sums of twisted automorphic L-functions. We begin by explaining how such series arise from Rankin-Selberg constructions. Then more recent work, using Hartogs’ continuation principle as extended by Bochner in place of such constructions, is described. Applications to the nonvanishing of Lfunctions and to other probl...
متن کاملWeyl Group Multiple Dirichlet Series, Eisenstein Series and Crystal Bases
If F is a local field containing the group μn of n-th roots of unity, and if G is a split semisimple simply connected algebraic group, then Matsumoto [27] defined an n-fold covering group of G(F ), that is, a central extension of G(F ) by μn. Similarly if F is a global field with adele ring AF containing μn there is a cover G̃(AF ) of G(AF ) that splits over G(F ). The construction is built on i...
متن کاملGeneralized multiple Dirichlet series and generalized multiple polylogarithms
where t is a complex variable. By Assumption I, we see that the series (1.3) is convergent when <t < 0. We further assume the following: (Assumption II ) ψ(s) can be continued analytically to the whole complex plane C, and holomorphic for all s ∈ C. In any fixed strip σ1 ≤ σ ≤ σ2, ψ(s; u) is uniformly convergent to ψ(s) as u → 1 + 0. Furthermore there exists a certain θ0 = θ0(σ1, σ2) ∈ R with 0...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Matemati?nì studìï
سال: 2023
ISSN: ['2411-0620', '1027-4634']
DOI: https://doi.org/10.30970/ms.58.2.182-200